Online Social Networks: The Structure of Emotional Dialogs

Bosiljka Tadić

Department of Theoretical Physics Jožef Stefan Institute, Ljubljana, Slovenia

TABIS, Belgrade, 16-22 september, 2013

Outline

- Multiscale Dynamics of Emotions
 - from Brain processes... to ...Social networks
- 2 Building Social Networks via Communications
 - Communicated contents shape the structure
- Modeling Emotional Dynamics on Networks: ABM
 - Agents with human-like attributes (...)
- Physics of Collective Emotional Behaviors
 - Fractal analysis of time series, and more

CONTRIBUTORS

Bosiljka Tadić & Vladimir Gligorijević Department of theoretical physics, Jožef Stefan Institute, Ljubljana, Slovenia

Milovan Šuvakov, Institute of Physics, Belgrade, Serbia

Link: http://www-f1.ijs.si/~tadic/projects/cybere_.html

PROJECTS: P1-0044 (Slovenia); CYBEREMOTIONS (EC FP7)

크 🕨 🖌 크

Multiscale Dynamics of Emotions

Building Social Networks via Communications Modeling Emotional Dynamics on Networks: ABM Physics of Collective Emotional Behaviors Outlook

from Brain processes... to ...Social networks

Outline

- Multiscale Dynamics of Emotions
 - from Brain processes... to ...Social networks
- Building Social Networks via Communications
 Communicated contents shape the structure
- Modeling Emotional Dynamics on Networks: ABM
 Agents with human-like attributes (...)
- Physics of Collective Emotional Behaviors
 Fractal analysis of time series, and more
- 5 Outlook

프 🖌 🛪 프 🕨

Multiscale Dynamics of Emotions

Building Social Networks via Communications Modeling Emotional Dynamics on Networks: ABM Physics of Collective Emotional Behaviors Outlook

from Brain processes... to ...Social networks

Brain: The Center of Emotions

Bio-chemical processes in Limbic system; Connections to oth parts of brain;

from Brain processes... to ...Social networks

Individual: Emotion Dynamics

Brain is constantly active; emotions produced; type and strength of emotion fluctuate over time, depending on brain

processes and external events...

...ready to communicate

from Brain processes... to ...Social networks

Write about it ...

Brain is constantly active; emotions produced; fluctuate, depending on events...

add a keyboard and time:

▶ < Ξ

from Brain processes... to ...Social networks

Write about it ...

Brain is constantly active; emotions produced; fluctuate, depending on events...

add a keyboard and time:

Multiscale Dynamics of Emotions Building Social Networks via Communications

Modeling Emotional Dynamics on Networks: ABM Physics of Collective Emotional Behaviors Outlook

from Brain processes... to ...Social networks

Add Communications

Brain is constantly active; emotions produced; fluctuate, depending on events...

add a keyboard and time:

generate a text message... send it via communication systems...

from Brain processes... to ...Social networks

Add Communications

Brain is constantly active; emotions produced; fluctuate, depending on events...

Outlook

add a keyboard and time:

generate a text message... send it via communication systems... ... (social) connections may appear:

from Brain processes... to ...Social networks

Social Networking in Online Communications

DATA from Web platforms: Users (anonymized) & their interactions (*time*, $i \rightarrow j$, *text*, ...) over time are available;

mapped onto mathematical graph (interaction.network); analysed by using graph theory and statistical physics;

from Brain processes... to ...Social networks

Emotions can be retreaved from text of messages

 Lexicon methods (ANEW)Affective Norms for English Words (1-4,5,5-9)

annoy	2.74	6.49	5.09		as onished aperv • • a traid
answer	6.63	5.41	5.85		excited
applause	7.50	5.80	6.48		0.5 • distressed • pealous convinced
arm	5.34	3.59	5.07		delighted
army	4.72	5.03	5.03	ısal	happy •
aroused	7.97	6.63	6.14	arot	• miserable
art	6.68	4.86	5.30		• worried
bastard	3.36	6.07	4.17		-0.5 • sad • ashamed attentive
bomb	2.10	7.15	4.54		serious • relaxed •
book	5.72	4.17	5.30		• bored compassionate
bored	2.95	2.83	4.11		-1 -0.5 0 0.5
			Tadić		Dunamic Phonomona on Notworks

Communicated contents shape the structure

Outline

- Multiscale Dynamics of Emotions
 from Brain processes... to ...Social networks
- Building Social Networks via Communications
 Communicated contents shape the structure
- Modeling Emotional Dynamics on Networks: ABM
 Agents with human-like attributes (...)
- Physics of Collective Emotional Behaviors
 Fractal analysis of time series, and more
- 5 Outlook

프 🖌 🛪 프 🕨

Communicated contents shape the structure

MySpace Network Organization

Online-Social-Networks: Users connected by "friendship" links; Interaction along directed w.links; nnn-visibility; Communities:

Use of the links makes the dynamical structure! Different from conventional social networks [Ref.]; *weights & emotions*

[Šuvakov et al., J. Roy. Soc. Interface Vol.10, 20120819 (2013)]

Communicated contents shape the structure

Online Chats Network: Ubuntu channel

Sharing knowledge; Self-organized dynamics: no *a priori* associations among users; Links used over long time: Persistent networks

Central core: Robot and Moderators (knowledgeable users); Emotional arousal over links related with network resilience [Ref.]

[Gligorijević, Skowron, Tadić: IEEE (2012), Physica A (2013)]

Communicated contents shape the structure

Remove the core: "Social chats?"

Structure of the remaining network is similar to online social networks:

Occurrence of *communities* as in online social networks; Testing "weak-tie" hypothesis: chats without 'core": social (?)

Communicated contents shape the structure

For how long the giant cluster persists?

Hysteresis in the percolation on networks $a_c \in [0.56, 0.8]$: inside–out or vv.

Critical fluctuations in the cluster size at a_c : Susceptibility to cutting links of a given arousal!

[Gligorijević, Skowron, Tadić: Physica A, vol.392,pp.538, 2012]

Communicated contents shape the structure

Topology of Social Dialogs in MySpace

Scale-free links organization; Disassortativity!; "weak tie" hypothesis holds, but exponents as in the "online games"!

"Social" behaviors, but different from conventional (offline) social networks ;

[Šuvakov et al., J. Roy. Soc. Interface Vol.10, 20120849 (2013)]

Communicated contents shape the structure

Topology of Social Dialogs in Chat Channels

Online chats lead to hierarchically organized networks; Scale-free in- out-degree; disassortative mixing patterns!

Networks from simulated message streams (ABM [ref]) give similar structure;

[Gligorijević, Šuvakov & Tadić: Building social networks in online chats with users, agents and Bots, Cambridge Scholar Pub. 2013]

Agents with human-like attributes (...)

Outline

- Multiscale Dynamics of Emotions
 from Brain processes... to ...Social networks
- Building Social Networks via Communications
 Communicated contents shape the structure
- Modeling Emotional Dynamics on Networks: ABM
 Agents with human-like attributes (...)
- Physics of Collective Emotional Behaviors
 Fractal analysis of time series, and more
- 5 Outlook

프 🖌 🛪 프 🕨

Agents with human-like attributes (...)

Rules & Parameters of ABM in MySpace

To understand mechanisms of emotional bursts: Agent-based modeling [Ref] emo.agents $i = 1, 2, \dots N = 33649$:

{id, $(a_i(t), v_i(t))$, links \in OSN; circadian.cycles; action.delay}

[BT, Modeling Web users as agents with reason and sentiment, in "Advances of Computational Modeling..." Novapublishing NY Tadić

Dynamic Phenomena on Networks

Agents with human-like attributes (...)

Mathematical Structure of the Model

Arousal-Valence nonlinear maps [Refs!]: $a_i(t+1) = (1 - \gamma_a)a_i(t) + \delta_{t_i,1}[\epsilon h_i^a(t) + (1 - \epsilon)\bar{h}_i^a(t)] \times [1 - a_i(t)]$ $v_i(t+1) = (1 - \gamma_v)v_i(t) + \delta_{t_i,1}[h_i^v(t)] \times [c_1 + c_2(v_i(t) - v_i^3(t))][1 - |v_i(t)|]$

Influence fields: $h_{i}^{z}(t) = \frac{\sum_{j} \sum_{m \in M_{jj}} \theta(t, t_{m}) z_{j}(t_{m}) W_{ji} e^{-\gamma^{h}(t_{ji}^{lm} - t_{m})}}{\sum_{j} \sum_{m \in M_{jj}} \theta(t, t_{m}) W_{ji} e^{-\gamma^{h}(t_{jj}^{lm} - t_{m})}} e^{-\gamma^{h}(t - t_{ji}^{lm})}$ Message stream: $h_{ji}^{a}(t) = \frac{\sum_{m \in M_{jj}} \theta(t, t_{m}) a_{j}(t_{m}) e^{-\gamma^{h}(t_{jj}^{lm} - t_{m})}}{\sum_{m \in M_{jj}} \theta(t, t_{m}) e^{-\gamma^{h}(t_{jj}^{lm} - t_{m})}} e^{-\gamma^{h}(t - t_{ji}^{lm})}$

Driving: p(t) new agents per time step, immediately active; Active agent's environment on the network systematically observed; and affected agents updated; high arousal triggers an action.

[Šuvakov et al., http://arxiv.org/abs/1205.6278]

Fractal analysis of time series, and more

Outline

- Multiscale Dynamics of Emotions
 from Brain processes... to ...Social networks
- Building Social Networks via Communications
 Communicated contents shape the structure
- Modeling Emotional Dynamics on Networks: ABM
 Agents with human-like attributes (...)
- Physics of Collective Emotional Behaviors
 Fractal analysis of time series, and more

프 🖌 🛪 프 🕨

Fractal analysis of time series, and more

Self-Organized Dynamics of Emotional Dialogs

Compute: Fractal features of simulated time series and avalanches of emotional messages:

Tadić Dynamic Phenomena on Networks

Fractal analysis of time series, and more

Varied input noise: p_0

Avalanches change:

Select High-Arousal messages: More correlations, but noise dependent!

Question: Why this distribution? $P(s) = A \left(1 + \frac{1}{\alpha} \frac{s}{s_0}\right)^{-\alpha}$

Fractal analysis of time series, and more

Arousal Triggering Fields

Theoretically, reasons can be found in the stochastic process:

• Coherent noise?/th. for noninteracting system [Sneppen] In the simulations, we can look at values of triggering fields

a.trigg.fields

arousals

• Nonextensive dynamical systems with non-additive entropy [Tsallis]? Reduced phase space; Correlated fluctuations, etc [Ref.]

[Hanel & Thurner: When do generalized entropies apply? How phase space volume determines entropy. EPL (2011)]

Fractal analysis of time series, and more

Fluctuations of Triggering Fields

Varying strength of input noise p_0 and/or removing p(t): three cases

Triggering fields have persistent fluctuations (even without p(t)); Non-Gaussian distributions of **log.returns**, but noise dependent; Characteristics of nonextensive systems.

Fractal analysis of time series, and more

Trajectories in Phase Space

Filling the phase space of emotion variables by agent's trajectories simulated for different input emotion: Emotion dynamics:

nonextensive!

[Šuvakov et al., http://arxiv.org/abs/1205.6278] < 🗆 🗠

Tadić

Dynamic Phenomena on Networks

- - Topology classes; different from conventional social networks
- Contents & Emotions are relevant for networking
 - Emotion components (a, v) play a specific role;
- Agent-Based Modeling reveals the dynamics of emotions
 - Physics of collective emotional behaviors;

Robots can make use of it?

- Online world: paradise for robots (algorithms, Bots)
- "Emotional" Chat Bots can be designed
- Inverted mechanisms cognition→ emotion

[Tadić & Šuvakov: Can human-like Bots control collective mood? Agent-based simulations of online chats, cond.mat/1305.2741]

ヨト・イヨト

References I

Tadić, B., Šuvakov, M.

Can Human-Like Bots Control Collective Mood: Agent-Based Simulations of Online Chats. arxiv:physics/1305.2741v1, JSTAT (in press) 2013.

- Tadić, B., Modeling behavior of Web users as agents with reason and sentiment.
 In Advances in Computational Modeling Research: Theory, Developments and Applications, A.B. Kora (Ed.); Novapublishing, N.Y., pp. 177–186, 2013;
- Gligorijevic, V.; Šuvakov, M.; Tadic, B., Building Social Networks of Online Chats

with Users, Agents and Bots.

In Complex Networks and their Applicatiobs (SITIS 2012), H. Cherifi (Ed.); Cambridge Scholars Publishing, pp. 1–10, 2013.

References II

Gligorijević, V.; Skowron, M.; Tadić, B.

Structure and stability of online chat networks built on emotion-carrying links.

Physica A: Statistical Mechanics and its Applications, 392, 538 – 543, (2013).

Šuvakov, M.; Mitrović, M.; Gligorijević, V.; Tadić, B.

How the online social networks are used: dialogues-based structure of MySpace.

Journal of the Royal Society Interface, 2012, 10, 20120819.

Mitrović, M.; Tadić, B.

Dynamics of bloggers' communities: Bipartite networks from empirical data and agent-based modeling. Physica A: Statistical Mechanics and its Applications, Vol. 391, pp. 5264 – 5278 (2012)

References III

M. Mitrović, G. Paltoglou and B. Tadić

Networks and Emotions in User Communities at Popular Blogs, Eur. Phys. J. B Vol. 77, pp. 597–609. (2010);

M. Mitrović and B. Tadić

Bloggers behavior and emergent communities in Blog space Eur. Phys. J. B Vol. 73, pp. 293-301 (2010)

J. Gruji'c, M. Mitrović and B. Tadić

Mixing patterns and communities on bipartite graphs of web-based social interactions

IEEE Xplore, DOI: 10.1109/ICDSP.2009.5201238 (2009)

References IV

M. Mitrović and B. Tadić,

Spectral and dynamical properties in classes of sparse networks with mesoscopic inhomogeneities,

Phys. Rev. E Vol. 80, 026123 (2009)

프 🖌 🖌 프

THANK YOU

